Abstract

In a previous paper this author examined the Born expansion and isolated those parts of the expansion that contribute most significantly to the scattering amplitude for large momentum transfer collisions in inelastic collisions from the ground state of both hydrogen and helium. It turned out that certain terms where the scattering electron interacts once with the nucleus and once with the other electron dominate. The physical reason is that large momentum transfer collisions require the nucleus to take the bulk of the incident momentum but require an interaction with the one of the bound electrons to change the state of the atom. The arguments are quite general and this paper will extend this analysis by comparing the inelastic results obtained by this method for hydrogen and helium to a close coupling calculation with many intermediate states. Further, we will extend this analysis to the correction to the 1st Born result for elastic electron–hydrogen and electron–helium collisions and provide some results for scattering from the initial metastable states of hydrogen for large momentum transfer collisions. A comparison of the results of this analytic approach will be made to the numerical close coupling approach and experiments where available. The agreement is remarkable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.