Abstract
An analytical approximation for differential cross-section of electron scattering on helium atoms is introduced. It is intended for Monte Carlo simulations, which, instead of angular distributions based on experimental data (or on first-principle calculations), usually rely on approximations that are accurate yet numerically efficient. The approximation is based on the screened-Coulomb differential cross-section with energy-dependent screening. For helium, a two-pole approximation of the screening parameter is found to be highly accurate over a wide range of energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.