Abstract

Electron energy-loss spectra for the butadiene molecule were measured in the scattering angular range of 2.0° to 8.0°, in an energy-loss range from 2 to 50 eV, using 1000 eV incident electrons. The absolute generalized oscillator strength (GOS) and inelastic cross section have been determined for the \hbox{$\tilde{\rm X}^{1}$}˜X1A g → 11B u transition. The absolute elastic differential cross section was also determined spanning an angular range from 2.0° to 40.0°. From a small angle electron energy-loss spectrum, the optical oscillator distribution (photoabsorption spectrum) for the butadiene molecule was obtained in the 2 to 100 eV photon energy range. Accurate ab initio calculations have been performed, within the First Born Approximation, for generalized oscillator strength (GOS) and excitation energies for the \hbox{$\tilde{\rm X}^{1}$}˜X1A g → 11B u and \hbox{$\tilde{\rm X}^{1}$}˜X1A g → 21A g transitions. Our results emphasize the importance of using highly correlated wavefunctions and accurate methodologies in the calculation of the GOS for electron impact-induced electronic transitions in molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.