Abstract

The resistivity size effect in Rh is investigated by quantifying electron scattering at surfaces and grain boundaries in polycrystalline Rh layers with thickness <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${d} =9$ </tex-math></inline-formula> –261 nm. Sputter deposition on SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /Si(001) at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${T}_{s} =20$ </tex-math></inline-formula> , 350, and 350 °C followed by <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">in situ</i> stepwise annealing to 750 °C yields three series of 111-textured Rh layers with increasing average lateral grain sizes <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${D}$ </tex-math></inline-formula> . Electron backscatter diffraction (EBSD) maps show that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${D}$ </tex-math></inline-formula> for annealed layers increases with layer thickness from <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${D} =89$ </tex-math></inline-formula> to 134 nm, matching the surface morphological lateral correlation length <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${{\xi }}=86$ </tex-math></inline-formula> –154 nm measured by atomic force microscopy (AFM). <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">In situ</i> transport measurements yield resistivity <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${{\rho }}$ </tex-math></inline-formula> versus <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${d}$ </tex-math></inline-formula> data, which are described with a combined Fuchs–Sondheimer (FS) and Mayadas–Shatzkes (MS) model and indicate a Rh electron mean free path <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${{\lambda }} =9.5$ </tex-math></inline-formula> unboldmath± 0.8 nm and a reflection coefficient <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R} =0.41$ </tex-math></inline-formula> unboldmath± 0.05 for grain boundaries characterized by a rotation about the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\langle 111\rangle $ </tex-math></inline-formula> axis. As-deposited layers have considerably smaller grains, leading to a threefold and sixfold increase in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${{\rho }}$ </tex-math></inline-formula> above the bulk value for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${d} =10$ </tex-math></inline-formula> nm and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${T}_{s} =350$ </tex-math></inline-formula> and 20 °C, respectively. The overall results indicate a conductance benefit of Rh versus Cu for narrow interconnect lines and reveal the importance of Rh processing to achieve a large (>10 nm) grain size, which is essential to realize the conductivity advantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.