Abstract

We use the $R$-matrix with time dependence method to study detachment from ${\mathrm{F}}^{\ensuremath{-}}$ in circularly polarized laser fields of infrared wavelength. By decomposing the photoelectron momentum distribution into separate contributions from detached $2{p}_{1}$ and $2{p}_{\ensuremath{-}1}$ electrons, we demonstrate that the detachment yield is distributed asymmetrically with respect to these initial orbitals. We observe the well-known preference for strong-field detachment of electrons that are initially counter-rotating relative to the field, and calculate the variation in this preference as a function of photoelectron energy. The wavelengths used in this work provide natural grounds for comparison between our calculations and the predictions of analytical approaches tailored for the strong-field regime. In particular, we compare the ratio of counter-rotating electrons to corotating electrons as a function of photoelectron energy. We carry out this comparison at two wavelengths, and observe good qualitative agreement between the analytical predictions and our numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.