Abstract

Ru(II) heteroleptic complexes as photosensitizers for dye-sensitized solar cells (DSCs) are presented. The article outlines design strategies, synthetic routes, optical and photovoltaic properties of ruthenium dyes based on polypyridines as ancillary ligands containing π-conjugated electron-rich heteroaromatic groups. The integration of donor heteroaromatic substituents, typically thiophene-based moieties, strongly improves the optical properties of the sensitizers in terms of bathochromic and hyperchromic shift compared to prototypical dyes N3 and N719. These favorable properties in turn yield DSCs with superior light harvesting abilities, higher external quantum efficiencies, improved device photocurrents, and top-ranked power conversion efficiencies. In combination with excellent stabilities under thermal stress and light soaking, this class of DSC photosensitizer has great potential for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.