Abstract

Electron resonant scattering by high-frequency electromagnetic whistler-mode waves has been proposed as a mechanism for solar wind electron scattering and pre-acceleration to energies that enable them to participate in shock drift acceleration around the Earth's bow shock. However, observed whistler-mode waves are often sufficiently intense to resonate with electrons nonlinearly, which prohibits the application of quasi-linear diffusion theory. This is the second of two accompanying papers devoted to developing a new theoretical approach for quantifying the electron distribution evolution subject to multiple resonant interactions with intense whistler-mode wave-packets. In the first paper, we described a probabilistic approach, applicable to systems with short wave-packets. For such systems, nonlinear resonant effects can be treated by diffusion theory, but with diffusion rates different from those of quasi-linear diffusion. In this paper, we generalize this approach by merging it with a mapping technique. This technique can be used to model the electron distribution evolution in the presence of significantly non-diffusive resonant scattering by intense long wave-packets. We verify our technique by comparing its predictions with results from a numerical integration approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.