Abstract

The electron resonance spectrum of SO has been previously shown to arise from SO in two electronic states, the ground 3 Ʃ - and the excited 1 ∆ state. In this paper the portion of the spectrum assigned to the 3 Ʃ - state is analysed and shown to arise from three isotopic species, 32 S 16 O, 33 S 16 O, and 34 S 16 O. The analysis shows that besides the dominant interaction of the unpaired electronic spins with the magnetic field; other interactions must be taken into account to interpret the spectrum accurately. Interactions with electronic orbital angular momentum of π states mixed in by spin-orbit coupling and with rotationally induced magnetic moments have been observed. Values for parameters measuring such interactions have been determined from the spectrum, and these values lead to a resolution of the first- and second-order contributions to the zero-field molecular constants as well as an approximate value for the spin-orbit coupling constant. The hyperftne structure resulting from 33 S in 33 S 16 O has also been observed and is related to the usual hyperfine coupling constants. The expected line strengths and widths for SO have been calculated and these are compared with the observed quantities. Besides the expected lines from the isotopic SO species in the 3 Ʃ - state, several other lines have been detected. These lines are interpreted as arising from 32 S 16 O in the ground electronic state, but in the first excited vibrational level. The spectrum of vibrationally excited SO allows a value of the spin-spin coupling constant in the first excited vibrational state to be determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.