Abstract

The research on high-efficiency two-dimensional (2D) catalytic materials for the small-molecule oxidation-assisted hydrogen evolution reaction (HER) is prospective for efficient hydrogen production. Herein, we report heterostructured Pt/Rh metallene with Pt nanoparticles (NPs) uniformly anchored on Rh metallene for the HER and ethylene glycol oxidation reaction (EGOR). The ultrathin sheet structure of the Pt/Rh metallene offers high surface areas and sufficient active sites. More importantly, the Pt/Rh heterostructure can optimize catalytic active centers and adjust electronic structure. Thus, Pt/Rh metallene exhibits superior electrocatalytic HER activity with a low overpotential of 28 mV in 1 M KOH at 10 mA cm-2 and EGOR activity with a specific activity of 8.39 mA cm-2 in 1 M KOH with 3 M EG, along with outstanding CO tolerance. In a two-electrode system, Pt/Rh metallene requires a low potential of 0.51 V for stable and efficient hydrogen production at 10 mA cm-2 in 1 M KOH + 3 M EG, with the simultaneous production of high-value-added products. The job proposes an attractive strategy for the synthesis of 0D/2D metallene toward simultaneous energy-saving hydrogen production and chemical update.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call