Abstract

Developing efficient heterogeneous H2O2 decomposition catalysts under neutral conditions is of great importance in many fields such as clinical therapy, sewage treatment, and semiconductor manufacturing but still suffers from low intrinsic activity and ambiguous mechanism understanding. Herein, we constructed activated carbon supported with an Ir-Fe dual-metal-atom active sites catalyst (IrFe-AC) by using a facile method based on a pulsed laser. The electron redistribution in Ir-Fe dual-metal-atom active sites leads to the formation of double reductive metal active sites, which can strengthen the metal-H2O2 interaction and boost the H2O2 decomposition performance of Ir-Fe dual-metal-atom active sites. Ir-Fe dual-metal-atom active sites show a high second-order reaction rate constant of 3.53 × 106 M-1·min-1, which is ∼106 times higher than that of Fe3O4. IrFe-AC is effective in removing excess intracellular reactive oxygen species, protecting DNA, and reducing inflammation under oxidative stress, indicating its therapeutic potential against oxidative stress-related diseases. This study could advance the mechanism understanding of H2O2 decomposition by heterogeneous catalysts and provide guidance for the rational design of high-performance catalysts for H2O2 decomposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call