Abstract

In galaxy clusters, the intracluster medium (ICM) is expected to host a diffuse, long-lived, and invisible population of “fossil” cosmic-ray electrons (CRe) with 1–100 MeV energies. These CRe, if reaccelerated by 100× in energy, can contribute synchrotron luminosity to cluster radio halos, relics, and phoenices. Reacceleration may be aided by CRe scattering upon the ion-Larmor-scale waves that spawn when ICM is compressed, dilated, or sheared. We study CRe scattering and energy gain due to ion cyclotron (IC) waves generated by continuously driven compression in 1D fully kinetic particle-in-cell simulations. We find that pitch-angle scattering of CRe by IC waves induces energy gain via magnetic pumping. In an optimal range of IC-resonant momenta, CRe may gain up to ∼10%–30% of their initial energy in one compression/dilation cycle with magnetic field amplification ∼3–6×, assuming adiabatic decompression without further scattering and averaging over initial pitch angle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.