Abstract
The electron pulse broadening and energy spread, caused by space charge effects, in a photoelectron gun are studied analytically using a fluid model. The model is applicable in both the photocathode-to-mesh region and the postanode electron drift region. It is found that space charge effects in the photocathode-to-mesh region are generally unimportant even for subpicosecond pulses. However, because of the long drift distance, electron pulse broadening due to space charge effects in the drift region is usually significant and could be much larger than the initial electron pulse duration for a subpicosecond electron pulse. Space charge effects can also lead to a considerable electron energy spread in the drift region. Temporal broadening is calculated for an initial electron pulse as short as 50 fs with different electron densities, final electron energies, and drift distances. The results can be used to design electron guns producing subpicosecond pulses for streak cameras as well as for time resolved electron diffraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.