Abstract

Electron probe x-ray microanalysis (EPMA) with energy dispersive x-ray spectrometry (EDS) provides the capability for detecting elements with atomic number ≥ 4 (beryllium) from an excited specimen volume with linear dimensions of micrometers and a mass in the picogram range. To maximize the utility of EPMA/EDS, the analyst needs to understand the rich source of information that is potentially available in the x-ray spectrum. At its most basic level, interpretation of the spectrum consists of recognizing and identifying the various components of the spectrum as recorded by the EDS system: characteristic peaks, artifacts, and continuum background. While a modern EDS system is capable of making this interpretation in an automatic fashion, the careful analyst will always check the computer’s interpretation, which of course demands that the analyst be at least as "smart" as the computer! A systematic examination of spectra from pure elements or simple compounds is a good way to develop the necessary working knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.