Abstract

In the given investigation contents of potassium and its physiological analog, rubidium, are determined in cardiomyocyte. Applying Electron Probe Microanalysis (EPMA), cytoplasmic concentrations of elements (K, Rb) are measured. The data obtained exhibit that for initial acute ischemia phase the active transport is involved in the uptake of rubidium which competes with potassium entry in cardiac myocell. Then, deep deenergization leads to the intracellular potassium depletion and rubidium retention. This suggests that Rb+ is physiologically not complete analog for K+. Results of combined perfusion with and without rubidium allow us to hypothesize the appearance of cascade of ionic transports to compensate acute ischemic disturbances following the oxygen and substrate deficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call