Abstract

Particle-in-cell Monte Carlo collision simulations and Boltzmann term analysis are applied to study the origination and properties of the electric field and the electron power absorption within the electronegative core of a capacitively coupled discharge in chlorine as the pressure is varied from 1 to 50 Pa. The capacitively coupled chlorine discharge exhibits high electronegativity and high electric field develops within the electronegative core. It is found that the electron power absorption increases and the ion power absorption decreases as the pressure is increased. At 1 Pa the electron power absorption is due to both the pressure and ohmic terms. At the higher pressures >10 Pa the ohmic term dominates and all the other contributions to the electron power absorption become negligible. Therefore, the discharge becomes increasingly ohmic with increased pressure and eventually behaves as a resistive load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.