Abstract
AbstractElectron–phonon mediated superconductivity is deeply investigated in two boron based monolayer materials, namely, , a metal exhibiting the ability to superconduct, and a new metal, , presenting perfect kinetic stability. Calculations based on density functional perturbation theory combined with the maximally localized Wannier function also reveal that both materials exhibit anisotropic planar hexagonal structure like graphene. The key parameters involved in the superconductor behavior are all calculated. The electronic density in the Fermi surface is given to provide the environment for enhanced electron–phonon coupling. The longitudinal and transverse vibration modes of optical phonons mainly contribute to the electron–phonon coupling strength. Furthermore, the binding energy between the bosonic Cooper pair superfluid is quantified and determined. The critical temperature for the two materials is 20 and 10.5 K, respectively. The results obtained show the potential use of such materials for superconducting applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.