Abstract

Applications of negatively charged nitrogen-vacancy center in diamond exploit the center's unique optical and spin properties, which at ambient temperature, are predominately governed by electron-phonon interactions. Here, we investigate these interactions at ambient and elevated temperatures by observing the motional narrowing of the center's excited state spin resonances. We determine that the center's Jahn-Teller dynamics are much slower than currently believed and identify the vital role of symmetric phonon modes. Our results have pronounced implications for center's diverse applications (including quantum technology) and for understanding its fundamental properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.