Abstract

This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped–clamped boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call