Abstract
The femtosecond dynamics of highly non-equilibrium, confined carriers is analyzed within a Monte Carlo approach. The physical process considered corresponds to a locally excited or injected into a semiconductor nanowire distribution of heated carriers, which evolve under the action of an applied electric field. The carriers are cooled down by dissipation processes caused by phonons. The process is described by a quantum-kinetic equation which generalizes the classical Boltzmann equation with respect to two classical assumptions, namely for temporal and spatial locality of the carrier–phonon interaction. We investigate the effect of the field on the electron–phonon interaction—the intra-collisional field effect (ICFE). A Monte Carlo method for simulation of the considered process has been utilized. Simulation results for carrier evolution in a GaAs nanowire are obtained and analyzed for phenomena related to the ICFE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.