Abstract

The polyphenols present in green tea or red wine comprise both regular flavon(ol)s and proanthocyanidins, i.e., derivatives of flavan-3-ols, whose distinct antioxidative potential is of great importance for explaining the beneficial effects of these nutrient beverages. Using EPR spectroscopy, we investigated radical structures obtained after oxidation of the parent compounds either by horseradish peroxidase/hydrogen peroxide or after autoxidation in moderately alkaline solutions. Both proanthocyanidins (monomers of condensed tannins, e.g., (+)-catechin, (−)-epicatechin, (−)-epicatechin gallate, (−)-epigallocatechin, (−)-epigallocatechin gallate, Pycnogenol) and gallate esters (hydrolyzable tannins, e.g., propylgallate, β-glucogallin, pentagalloyl glucose and tannic acid) yielded predominantly semiquinone structures derived from the parent catechol or pyrogallol moieties. Evidence for a time-dependent oligomerization was obtained for (−)-epigallocatechin gallate, supporting our hypothesis that o-quinones formed from the initial semiquinone disproportionation are prone to nucleophilic addition reactions. Such phenolic coupling reactions would retain the numbers of reactive catechol/pyrogallol structures and thus the antioxidative potential. We therefore propose that proanthocyanidins are superior antioxidants as compared to flavon(ol)s proper, whose quinones are more likely to redox-cycle and act as prooxidants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.