Abstract

The chemical effects of the acoustic cavitation generated by ultrasound translates into the production of highly reactive radicals. Acoustic cavitation is widely explored in aqueous solutions but it remains poorly studied in organic liquids and in particular in liquid/solid media. However, several heterogeneous catalysis reactions take place in organic solvents.Thus, we sonicated trimethylene glycol and propylene glycol in the presence of silica particles (SiO2) of different sizes (5–15 nm, 0.2–0.3 µm, 12–26 µm) and amounts (0.5 wt% and 3 wt%) at an ultrasound frequency of 20 kHz to quantify the radicals generated. The spin trap 5,5-dimethyl-1-pyrrolin–N-oxide (DMPO) was used to trap the generated radicals for study by electron paramagnetic resonance (EPR) spectroscopy. We identified the trapped radical as the hydroxyalkyl radical adduct of DMPO, and we quantified it using stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a quantitation standard. The concentration of DMPO spin adducts in solutions containing silica size 12–26 µm was higher than the solution without particles. The presence of these particles increased the concentration of the acoustically generated radicals by a factor of 1.5 (29 µM for 0.5 wt% of SiO2 size 12–26 µm vs 19 µM for 0 wt%, after 60 min of sonication). Ultrasound produced fewest radicals in solutions with the smallest particles; the concentration of radical adducts was highest for SiO2 particle size 12–26 µm at 0.5 wt% loading, reaching 29 µM after 60 min sonication. Ultrasound power of 50.6 W produced more radicals than 24.7 W (23 µM and 18 µM, respectively, at 30 min sonication). Increased temperature during sonication generated more radical adducts in the medium (26 µM at 75 °C and 18 µM at 61 °C after 30 min sonication). Acoustic cavitation, in the presence of silica, increased the production of radical species in the studied organic medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.