Abstract

We report a continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) as well as pulse electron nuclear double resonance (ENDOR) study of Cu2+ doped [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite which exhibits a structural phase transition. The multifrequency (X, Q and W-band) CW EPR measurements allow the temperature evolution of the Cu2+ ion local environment to be studied. The spectrum of the ordered (low-temperature) phase reveals an axially distorted octahedral Cu2+ site confirming the successful replacement of the Zn2+ ions and formation of the CuO6 octahedra. The CW EPR spectrum of the disordered (high-temperature) phase shows an additional broad line which gradually diminishes on cooling. The EPR linewidth of the axially symmetric Cu2+ ion site exhibits an anomaly at the phase transition point and Arrhenius-type behavior in the disordered phase. The temperature dependent Cu2+ spin Hamiltonian parameters change abruptly at the phase transition point indicating a strong first-order character of the transition. The X-band pulse ENDOR spectrum of the ordered phase reveals several protons in the vicinity of the Cu2+ center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.