Abstract

Several reports of electron paramagnetic resonance experiments performed on the spin - Peierls compound have appeared so far, but none of them have precisely explained the origin of the line broadening and the temperature dependence of both the linewidth and the resonance field, all of which differ from those of conventional one-dimensional Heisenberg antiferromagnets in which the dipolar or anisotropic exchange interaction brings about line broadening. In the present report, it is clarified that the antisymmetric exchange interaction, with -axis (magnetic chain), between nearest-neighbour Cu spins on the c-axis governs all factors which characterize the EPR line of , i.e., the value and the angular dependence of the linewidth at high temperatures where the short-range order is completely absent, the temperature dependence of the linewidth, and the resonance field, as well as the high-temperature lineshape. The present conclusion indicates that the crystal symmetry of this compound is lower than that given by the space group Pbmm which was reported by Völlenkle et al in 1967, because the symmetry Pbmm does not allow the antisymmetric exchange interaction mentioned above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.