Abstract

Deep-level defects in silicon carbide (SiC) are critical to the control of the performance of SiC electron devices. In this paper, deep-level defects in aluminum ion-implanted 4H-SiC after high-temperature annealing were studied using electron paramagnetic resonance (EPR) spectroscopy at temperatures of 77 K and 123 K under different illumination conditions. Results showed that the main defect in aluminum ion-implanted 4H-SiC was the positively charged carbon vacancy (VC+), and the higher the doping concentration was, the higher was the concentration of VC+. It was found that the type of material defect was independent of the doping concentration, although more VC+ defects were detected during photoexcitation and at lower temperatures. These results should be helpful in the fundamental research of p-type 4H-SiC fabrication in accordance with functional device development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.