Abstract

Peroxide compounds of manganese protoporphyrin IX and its complexes with apo-horseradish peroxidase and apocytochrome- c peroxidase were characterized by electron absorption and electron paramagnetic resonance spectroscopies. An intermediate formed upon titration of Mn(III)-horseradish peroxidase with hydrogen peroxide exhibited a new electron paramagnetic resonance absorption at g = 5.23 with a definite six-lined 55Mn hyperfine ( A Mn = 8.2 mT). Neither a porphyrin π-cation radical nor any other radical in the apoprotein moiety could be observed. The reduced form of Mn-horseradish peroxidase, Mn(II)-horseradish peroxidase, reacted with a stoichiometric amount of hydrogen peroxide to form a peroxide compound whose electronic absorption spectrum was identical with that formed from Mn(III)-horseradish peroxidase. The electronic state of the peroxide compound of manganese horseradish peroxidase was thus concluded to be Mn(IV), S = 3 2 . Mn(III)-cytochrome- c peroxidase reacted with stoichiometry quantities of hydrogen peroxide to form a catalytically active intermediate. The electronic absorption spectrum was very similar to that of a higher oxidation state of manganese porphyrin, Mn(V). Since the peroxide compound of manganese cytochrome- c peroxidase retained two oxidizing equivalents per mol of the enzyme (Yonetani, T. and Asakura, T. (1969) J. Biol. Chem. 244, 4580–4588), this peroxide compound might contain an Mn(V) center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.