Abstract

The formation of surface color centers (F(S) centers) by electron bombardment of thin MgO(001) films is investigated using electron paramagnetic resonance and low-temperature scanning tunneling microscopy. At low electron doses both techniques indicate the formation of singly occupied color centers (F(S)(+)), whereas at high electron doses the doubly occupied type (F(S)(0)) is dominant. It is suggested that with increasing electron dose F(S)(+) centers are transformed into F(S)(0). Tunneling spectra of individual F(S)(0) centers reveal a large distribution of energetic positions of occupied and unoccupied states, which is caused by local variations of the coordination number of the defects and explains the broad signals usually detected with integrating spectroscopic techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.