Abstract

To reveal the molecular mechanism of involvement of photosystem II (PSII)-L protein in the electron transfer in PSII, effects of mutations in PSII-L on the photochemistry of PSII were investigated by means of electron paramagnetic resonance (EPR) and flash photolysis. Wild type and a series of mutant versions of PSII-L were overproduced in Escherichia coliand chromatographically purified. Plastoquinone 9 (PQ-9) depleted PSII reaction center core complex consisting of CP47/D1/D2/Cytb-559/PSII-I/PSII-W was prepared and reconstituted with the wild type and each mutant version of PSII-L together with or without PQ-9. EPR signal indicating the formation of Tyr-Z+P680Pheo- state upon room-temperature illumination disappeared in CP47/D1/D2/Cytb-559/PSII-I/PSII-W, and it was recovered when the complex was reconstituted with the wild-type PSII-L. Mutation of a few amino acid residues in the carboxyl-terminal region of PSII-L, such as substitution of a triad of Tyr34, Phe35, and Phe36 by Leu, selectively resulted in the loss of the capability of PSII-L to recover the light-induced formation of Tyr-Z+P680Pheo- state in the reconstituted complex. Hydropathy profile of PSII-L suggests that it spans the membrane once by a hydrophobic stretch of the carboxyl-terminal side as its carboxyl end to face to the lumen. If this is the case, the amino acid residues essential for PSII-L to function are expected to be located close to the donor side of P680, suggesting the interaction of PSII-L with Tyr-Z (and/or Tyr-D) or P680 to facilitate the oxidation of Tyr-Z by P680+ to form Tyr-Z+P680Pheo- state in PSII. Evidence against PSII-L being involved in the electron transfer from Pheo- to QA was obtained by the flash photolysis experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call