Abstract

The electronic intracule (relative motion) and extracule (centre-of-mass motion) densities are electron-pair densities which characterize the motion of a pair of electrons in atoms and molecules. A unified method is presented for the evaluation of these electron-pair densities in both position and momentum spaces for wavefunctions expressed as linear combinations of Slater determinants. Detailed expressions are developed for atomic systems where angular integrations can be performed analytically. Interesting relations between atomic intracule and extracule densities and between their moments are discussed. An illustrative application of the results is given for the and states of the helium atom, and the first calculations are reported for the singlet-triplet differences in the extracule densities and in the momentum-space intracule density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.