Abstract

The techniques of EPR and electron nuclear double resonance (ENDOR) were used to probe structure and electronic distribution at the nitric oxide (NO)-ligated heme alpha 3 in the nitrosylferrocytochrome alpha 3 moiety of fully reduced cytochrome c oxidase. Hyperfine and quadrupole couplings to NO (in both 15NO and 14NO forms), to histidine nitrogens, and to protons near the heme site were obtained. Parallel studies were also performed on NO-ligated myoglobin and model NO-heme-imidazole systems. The major findings and interpretations on nitrosylferrocytochrome alpha 3 were: 1) compared to other NO-heme-imidazole systems, the nitrosylferrocytochrome alpha3 gave better resolution of EPR and ENDOR signals; 2) at the maximal g value (gx = 2.09), particularly well resolved NO nitrogen hyperfine and quadrupole couplings and mesoproton hyperfine couplings were seen. These hyperfine and quadrupole couplings gave information on the electronic distribution on the NO, on the orientation of the g tensor with respect to the heme, and possibly on the orientation of the FeNO plane; 3) a combination of experimental EPR-ENDOR results and EPR spectral simulations evidenced a rotation of the NO hyperfine tensor with respect to the electronic g tensor; this implied a bent Fe-NO bond; 4) ENDOR showed a unique proton not seen in the other NO heme systems studied. The magnitude of this proton's hyperfine coupling was consistent with this proton being part of a nearby protein side chain that perturbs an axial ligand like NO or O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.