Abstract

We study the electron momentum distribution function (EMDF) for the two-dimensional t– t′– J model doped with one hole on finite clusters by the method of twisted boundary conditions. The results quantitatively agree with our analytical results for a single hole in the antiferromagnetic background, based on the self-consistent Born approximation (SCBA). Moreover, within the SCBA an anomalous momentum dependence of EMDF is found, pointing to an emerging large Fermi surface. The analysis shows that the presence of next-nearest-neighbor (NNN) hopping terms changes EMDF only quantitatively if the ground state (GS) momentum is at (π/2,π2) and qualitatively if the GS momentum is shifted to (π,0).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.