Abstract

The authors report the first study of the Fermi surface topology, electron momentum density and spin momentum density in ferromagnetic iron using two-dimensional angular correlation of polarised positron annihilation radiation. A calculation made in the independent-particle model was obtained from the self-consistent linear muffin-tin orbital method. Comparison between experiment and calculation reveals marked discrepancies which are due to both electron-electron and electron-positron correlation effects. Analysis of experimental distributions shows that the large N-centred hole pocket of minority third band does not exist in contrast with the self-consistent calculation results. A parametrised band-structure calculation has been performed to account for the electron-electron correlation effects. Distributions resulting from this procedure were in better agreement with experiment than the self-consistent ones. Once again the nature of electron-positron correlation effects is found to resemble those observed by Sing et al. for nickel. This confirms the systematic trends of electron-positron correlation effects for localised d electrons. The correct description of the relative spin momentum density distribution requires different enhancement factors for majority and minority electron bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call