Abstract

We investigate the effects of surface tunneling on electrostatics and transport properties of two-dimensional electron gases (2DEGs) in undoped Si/SiGe heterostructures with different 2DEG depths. By varying the gate voltage, four stages of density-mobility dependence are identified with two density saturation regimes observed, which confirms that the system transitions between equilibrium and nonequilibrium. Mobility is enhanced with an increasing density at low biases and, counterintuitively, with a decreasing density at high biases as well. The density saturation and mobility enhancement can be semiquantitatively explained by a surface tunneling model in combination with a bilayer screening theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.