Abstract

ABSTRACTA transmission electron microscope (TEM) is much more than just a tool for imaging the static state of materials. To demonstrate this, we present work on studying the mechanical and electrical properties of carbon nanotube devices. Multiwall carbon nanotubes are concentrically stacked tubular sheets of graphite, where the spacing between each cylinder is simply the natural spacing of graphite. Using a custom-built in-situ nanomanipulation probe, we have shown that it is possible to slide the nanotube layers in a telescopic extension mode that exhibits low friction, demonstrating the potential of nanotubes as the ultimate synthetic nanobearing. During this telescopic extension, the electrical resistance of the nanotube devices increases, opening the possibility that these devices can also be used as nanoscale rheostats. We also briefly describe work on using electron holography inside a TEM to study the electric field distribution in nanotube field-emission devices and on using a nanotube itself as a biprism for electron holography. These measurements together demonstrate the wealth of information that can be obtained and frontiers that can be opened by putting operational nanodevices inside an electron microscope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.