Abstract

Supercoiled pEJ4 DNA (a derivative of pUC19 containing an insert with 60-bp-long homopurine.homopyrimidine tract from the sea urchin P. miliaris histone gene spacer) was investigated by electron microscopy using three different spreading techniques i.e., formamide and aqueous variants of the Kleinschmidt technique and protein-free benzyldimethyl-alkyl ammonium chloride (BAC) technique at different pHs. If the specimens for electron microscopy were prepared at pH 5.6 and pH 4.0 (i.e., under conditions where the homopurine.homopyrimidine tract assumes an unusual conformation) a single thick "stem" or a "denaturation bubble" in a large number of DNA molecules were observed. No such changes were found in samples prepared at neutral pH and in linearized pEJ4 DNA prepared at pH 5.6. In specimens of a control supercoiled pUC19 DNA prepared at pH 5.6 and 4.0 practically no local changes were detected. The "denaturation bubbles" were observed by BAC techniques (probably due to secondary local DNA denaturation during the specimen preparation) while the more gentle formamide technique revealed only "stems". The "stems" were almost always positioned at the sites where the curvature of supercoiled DNA molecules occurred. The results are in agreement with presence of a protonated triplex H-form in homopurine.homopyrimidine tract bringing the first evidence of curvature or kinking of the DNA molecule connected with the occurrence of the H-form in supercoiled DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.