Abstract

Crystals of heavy riboflavin synthase from Bacillus subtilis were freeze-etched and vacuumcoated at normal incidence with 0.1 to 0.4 nm of gold and silver, respectively. This decoration technique was applied to probe the protein surface for preferential nucleation sites. Image processing of the electron micrographs revealed two particular decoration sites for silver and a different one for gold. According to X-ray crystallography, the riboflavin synthase molecules are spherical and smooth except for a surface corrugation of less than 1 nm, which can not be depicted by heavy-metal shadowing. Thus the decoration sites represent sites of specific physical-chemical interactions between the condensing metal and the protein. The decoration pattern correctly reflects the icosahedral symmetry of the almost spherical protein molecules. Owing to the molecule's symmetry, the position of these topochemical sites with respect to the symmetry axes can be localized within 5 Å. The packing of the molecules in the crystal can be directly observed on shadowed replicas. Only decoration, however, makes it possible to observe the exact orientation of the molecules within the crystal planes and to derive the true lattice constant along the 6-fold screw axis. This proves decoration to be a technique suitable for studying crystal packing and the molecular symmetry of protein complexes at high resolution. The technique can be applied to crystals that are not large enough or insufficiently ordered for X-ray crystallography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.