Abstract
Columnar mesoporous silicon (PSi) with hydrophobic vs. hydrophilic chemistries was chosen as a model for the local (pore-by-pore) study of water-pore interactions. Tomographic reconstructions provided a 3D view of the ramified pore structure. An in situ study of PSi wetting was conducted for categorized pore diameters by environmental scanning TEM. An appropriate setting of the contrast allows for the normalization of the gray scale in the images as a function of relative humidity (RH). This allows constructing an isotherm for each single pore and a subsequent averaging provides an isotherm for each pore size range. The isotherms systematically point to an initial adsorption through the formation of water adlayers, followed by a capillary filling process at higher RH. The local isotherms correlate with (global) gravimetric determination of wetting. Our results point at the validation of a technique for the study of aging and stability of single-pore nanoscale devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.