Abstract

Dividing epithelial cells in the mouse small intestine were examined by thin-section electron microscopy with special attention given to the mode of cytokinesis. As the columnar epithelial cells entered mitosis in the crypt, they became rounded, maintaining their junctional complexes with neighboring cells while detaching themselves from the basal lamina. In such rounded cells the mitotic apparatus was formed with its long axis parallel to the luminal surface. Replicated centrioles moved down from the apical region to locate themselves lateral to the nucleus, where they served as the poles of the mitotic spindle. During mitosis the cell retained microvilli on its luminal surface, though the terminal web became much thinner. At telophase the formation of a cleavage furrow proceeded asymmetrically from the basal side alone, and thus the contractile ring which was prominent at the base of the furrow, merged with the terminal web. Eventually, an intercellular bridge with a midbody was formed on the luminal surface. The space in the furrow was occupied by the flattened cytoplasmic processes of the neighboring cells. The tight junction was also seen on the basolateral surface of the intercellular bridge with the underlying neighboring cells. At very late telophase the intercellular bridge was disconnected from the neighboring cells and protruded into the lumen. These observations have led us to propose a mode by which the simple columnar epithelium maintain the tight junctional seal during cell division in the crypt of the small intestinal epithelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.