Abstract

Nitric oxide synthase (NOS) activity has been detected previously in the mammalian cochlea at a light microscopic level. Here we present results of electron microscopic analysis for post-embedding immunoreactivity of neural-type NOS I in the cochlea of the guinea pig. Strong enzyme immunoreactivity was identified in the cytoplasm of inner and outer hair cells. Gold-labeled NOS I antibodies were mainly located in electron-dense areas of the cytoplasm, whereas electron-lucent regions of the receptor cells were nearly free from any immunoreactivity. In both types of hair cells anti-NOS I antibodies were also visible in the cuticular plates, hair bundles and nuclei. Further ultrastructural analysis revealed that the submembranous cisternae of the outer hair cells were nearly free from any reaction product, demonstrating that the whole cytoplasm of this hair cell was not immunoreactive. Other NOS I immunoreactivity was identified in the cuticular plates of the inner and outer pillar cells and in the cytoskeletal elements located in the apical parts of Deiter cells, forming the lamina reticularis or in cytoskeletal-containing regions in basal Deiter cells. Anti-NOS antibodies were visible in the nuclei of various cell types. Our findings suggest that nitric oxide produced by NO I synthase in the organ of Corti may act as a modulator of hair cell physiology during the processes of signal transduction with frequency selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call