Abstract

Microstructure transformation of materials under compression is crucial to understanding their high-pressure phase transformation. However, direct observation of the microstructure of compressive materials is a considerable challenge, which impedes the understanding of the relations among phase transformation, microstructure, and material properties. In this study, we used transmission Kikuchi diffraction and transmission electron microscopy to intuitively characterize pressure-induced phase transformation and microstructure of TiO2. We observed the changes of twin boundaries with increasing pressure and intermediate phase TiO2-I of anatase transformed into TiO2-II (α-PbO2 phase) for the first time. The following changes occur during this transformation: anatase (diameter of ∼100 nm) → anatase twins 60° along the [110] zone axis → intermediate TiO2-I twins 60° along the [010] zone axis → TiO2-II twins 90° along the [010] zone axis. These results directly reveal the crystallographic relation among these structures, enhancing our understanding of the phase transformation in TiO2 nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.