Abstract

AbstractIn a hydrozoan jellyfish, the female gonad is differentiated from a specialized region of the epidermis near the manubrium. Changes in the oocytes during growth and vitellogenesis are described as observed with electron microscopic and cytochemical techniques. Three major types of yolk are formed; these include lipid, glycogen, and membrane‐bound granules consisting of both protein and carbohydrate. The latter first appear evident within vesicular and cisternal elements of the numerous Golgi complexes. The orientation and structural variations noted between the endoplasmic reticulum and forming face of the Golgi complexes suggest that the protein component of the yolk granules may be transferred from the cisternae of the endoplasmic reticulum to the Golgi complex where it is joined to carbohydrate perhaps synthesized by the Golgi complexes. Stages in the release of the precursor yolk material sequestered in cisternal elements of the Golgi complexes are illustrated. The presence of coated and uncoated vesicles in the Golgi regions and their possible role in intracellular transport are described and discussed. The presence and possible method of morphogenesis of vesiculate yolk bodies are also described. What appear to represent invaginations of the oolemma extend into the ooplasm and display a special orientation with respect to lamellae of the rough‐surfaced endoplasmic reticulum. Intraooplasmic synthesis appears to constitute the major pathway for protein‐carbohydrate yolk deposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.