Abstract

Bovine brain tubulin, purified by phosphocellulose chromatography (PC), was assembled in the presence of 10% dimethyl sulfoxide (DMSO), and the reaction was monitored turbidimetrically. Samples were fixed in glutaraldehyde-tannic acid after completion of polymerization, as indicated by no further change in absorbance, and then sectioned and studied electron microscopy, with special attention being given to the arrangement of protofilaments in the walls of formed elements. Samples of PC-tubulin were polymerized in buffer having various pH values from 6.0 to 7.7. At the lower pH values, only branched and flattened ribbons of protofilaments are formed. At intermediate values, the ribbons are unbranched, narrower, and more curved in cross section; complete microtubules are also seen. At the higher pH values, the predominate formed elements are complete microtubules. Most of the complete microtubules examined in this study had 14 wall protofilaments. The effect of pH on tubulin assembly was shown not to be an effect of DMSO. The dimers of associated protofilaments in ribbons and microtubules are conceptually viewed as having trapezoidal profiles in cross section, and, as additional dimers are added, the "C"-shaped ribbon closes to form a tube. The tilt angle of the lateral surfaces of the "trapezoidal" dimers will determine the number of wall protofilaments in the microtubules. At low pH, it is theorized that the trapezoidal profile of the dimer is shifted to a more rectangular configuration such that flat ribbons are formed by the lateral association of dimers. Also, variously shaped ribbon structures are formed at intermediate pH values, including "S"- and "W"-shaped structures, and elements shaped like a figure "6," all representing ribbons viewed in cross section. By visualizing the trapezoidal dimer in three-dimensions, and by arbitrarily indexing its six binding surfaces, it is possible to discuss interdimer binding in terms of preferred and possible binding interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.