Abstract

Controlled precipitation of quasi-binary semiconductor system is newly proposed as an effective and reliable technique for the formation of well-defined and crystallographically aligned semiconductor nanostructures. Using HgTe-PbTe quasi-binary semiconductor system, self-aligned HgTe nanocrystallites distributed three dimensionally within PbTe matrix were successfully formed by the simple three step heat treatment process routinely found in age hardening process of metallic alloys. Examination of the resulting nano precipitates using conventional transmission electron microscopy (CTEM) and high resolution TEM (HRTEM) reveals that the coherent HgTe precipitates form as thin discs along the (100) habit planes making a crystallographic relation of {100}<TEX>$\_$</TEX>HgTe///{100}<TEX>$\_$</TEX>PbTe/ and [100]<TEX>$\_$</TEX>HgTe///[100]<TEX>$\_$</TEX>PbTe/. It is also found that the precipitate undergoes a gradual thickening and a faceting under isothermal aging up to 500 hours without any noticeable coarsening. These results, combined with the extreme dimension of the precipitates (4-5 nm in length and sub-nanometer in thickness) and the simplicity of the formation process, leads to the conclusion that controlled precipitation is an effective method for preparing desirable quantum-dot nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.