Abstract

To probe magnetic ordering in single crystals of La <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> MnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> (x = 0.01, 0.05, 0.13) and in ceramics of LaMn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-y</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> (y = 0, 0.02, 0.06), the X-band electron magnetic resonance measurements were carried out in the temperature range 5 K les T les 600 K. The temperature dependences of doubly integrated intensity of electron paramagnetic resonance signal and its linewidth were fitted with known theoretical models modified for taking into account the different mechanisms of spin relaxation. The experimental data and their fits evidence that Mn- and La-site vacancies dope the holes in parent LaMnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> , which induces ferromagnetic double exchange interaction. However, strong structural and chemical disorder of La <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> MnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> crystals makes the ferromagnetic ground state eventually impossible even at x = 0.13. In a contrast, better structural/chemical homogeneity together with a stronger impact of Mn-site vacancies on mixed manganese valence and double exchange are characteristic for LaMn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-y</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ceramics. As a result, the LaMn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.94</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> compound appears to be ferromagnetic-like ordered and demonstrates band-like propagation of doped carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call