Abstract

We report the effects of electron-lattice coupling on the charge density distribution study of armchair graphene nanoribbons (GNRs). Here, we perform a theoretical investigation explaining the unexpected electronic density states observed experimentally. By means of a tight-binding approach with electron-lattice coupling, we obtained the same characteristic pattern of charge density along the C-C bonds suggested by both scanning tunneling and transmission electron microscopic measurements. Our results suggest electronic localized states whose sizes are dependent on the GNR width. We also show that our model rescues the quasi-particle charge-transport mechanism in GNRs. The remarkable agreement with experimental evidence allows us to conclude that our model could be, in many aspects, a fundamental tool when it comes to the phenomenological understanding of the charge behavior in this kind of system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.