Abstract

Electron kinetics in atmospheric-pressure argon and nitrogen microwave (4 GHz) microdischarges is studied using a self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. The reversal of electric field (i.e., inverted sheath formation) is obtained in nitrogen and is not obtained in argon. This is explained by the different energy dependencies of electron-neutral collision cross sections in atomic and molecular gases and, as a consequence, different drag force acting on electrons. A non-local behavior of electron energy distribution function is obtained in both gases owing to electrons are generated in the plasma sheath. In both gases, electron energy relaxation length is comparable with the interelectrode gap, and therefore, they penetrate the plasma bulk with large energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call