Abstract

The problem of the electron dynamics on a closed magnetic field line passing through a high- $Z$ plasmoid is considered. The electron kinetic equation is integrated over bounce motion and pitch angle, reducing the independent variables to a single adiabatic invariant plus time. Integration of the full Landau self-collision operator is carried out exactly, resulting in a nonlinear integro-differential operator in the new invariant. Conservation laws and the $H$ theorem of the integrated self-collision operator are proven. Numerical solutions of the integrated kinetic equation are obtained with a self-consistent quasineutral electric potential, given the initial condition of a cold plasmoid immersed in a hot ambient plasma. The fact that cold electrons are deeply trapped in a potential with a parabolic peak leads to exactly 3/4 the usual rate of collisional heating by the ambient plasma, independent of any other parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call