Abstract
In this paper, we report the effects of high-energy electron irradiation on the DC characteristics of polyimide passivated InP/InGaAs single heterojunction bipolar transistors. In contrast with the results of electron irradiation of unpassivated devices, the polyimide-passivated devices show much less degradation of current gain and no change in the collector output conductance. The decrease of collector current in the active regime is found to be typically /spl sim/ 9 percent for a cumulative equivalent 1-MeV dose of 2.7/spl times/10/sup 16/ e/cm/sup 2/ (/spl sim/620 Mrad (InGaAs)). For low base currents, the devices show an increase in the current gain for smaller doses (<2.5/spl times/10/sup 15/ e/cm/sup 2/) followed by a decrease at the higher doses. The increase in the current gain at low doses is attributed to the trapped charge in the polyimide layer near the periphery of the B-E junction. The most significant effect of electron irradiation on the passivated devices is a-decrease in the slope of the I/sub C/-V/sub CE/ characteristics of some devices in the saturation regime. We believe this decrease in slope is caused by an increase in the collector series resistance after irradiation. Finally, devices with smaller emitter size are shown to have less radiation degradation than the larger emitter devices. This is explained by the smaller radiation damage at the junction peripheries of the passivated devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.