Abstract

The mechanisms of electron irradiation damage to epoxy resin samples were evaluated using their electron diffraction patterns and electron energy-loss spectra. Their electron diffraction patterns consisted of three indistinct halo rings. The halo ring corresponding to an intermolecular distance of ∼6.4 Å degraded rapidly. Such molecular-scale collapse could have been caused by cross-linking between molecular chains. The degree of electron irradiation damage to the samples changed with the accelerating voltage. The tolerance dose limit of the epoxy resin estimated from the intensity of the halo ring was found to be improved at a higher accelerating voltage. Changes in low-loss electron energy-loss spectra indicated that the mass loss of the epoxy resin was remarkable in the early stage of electron irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call