Abstract
The mechanisms of electron irradiation damage to epoxy resin samples were evaluated using their electron diffraction patterns and electron energy-loss spectra. Their electron diffraction patterns consisted of three indistinct halo rings. The halo ring corresponding to an intermolecular distance of ∼6.4 Å degraded rapidly. Such molecular-scale collapse could have been caused by cross-linking between molecular chains. The degree of electron irradiation damage to the samples changed with the accelerating voltage. The tolerance dose limit of the epoxy resin estimated from the intensity of the halo ring was found to be improved at a higher accelerating voltage. Changes in low-loss electron energy-loss spectra indicated that the mass loss of the epoxy resin was remarkable in the early stage of electron irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.