Abstract

Electron injection at dye-sensitized semiconductors is reviewed. Particular emphasis is placed on theoretical and photoelectrochemical studies of dye-sensitized planar and single-crystal electrodes. The accepted mechanism of electron injection, which was derived from these classical studies, is introduced. Selected photoelectrochemical studies of dye-sensitized nanocrystalline semiconductors are reviewed; emphasis is given to factors that influence the efficiencies of electron injection and charge recombination. The development of quasi-solid-state nanocrystalline dye-sensitized solar cells is also discussed. Recent time-resolved spectroscopic studies of electron injection and charge recombination are reviewed. These studies have led to a better understanding of electron injection mechanisms, and have revealed the limitations of the classical models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call