Abstract
We develop the many-pole dielectric theory of UV plasmon interactions and electron energy losses, and couple our advances with recent developments of Kohn-Sham density functional theory to address observed discrepancies between high-precision measurements and tabulated data for electron inelastic mean free paths (IMFPs). Recent publications have demonstrated that a five standard error difference exists between longstanding theoretical calculations and measurements of electron IMFPs for elemental solids at energies below 120 eV, a critical region for analysis of electron energy loss spectroscopy (EELS), X-ray absorption spectroscopy (XAS), and related technologies. Our implementation of improved optical loss spectra and a physical treatment of second-order excitation lifetimes resolves this problem in copper for the first time for energies in excess of 80 eV and substantially improves agreement for lower energy electrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.